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Comparative transcriptional analyses of preclinical models and
patient samples reveal MYC and RELA driven expression
patterns that define the molecular landscape of IBC
Charlotte Rypens 1,2✉, François Bertucci 3,4, Pascal Finetti 3, Fredika Robertson5, Sandra V. Fernandez 6, Naoto Ueno 7,
Wendy A. Woodward 8, Kenneth Van Golen9, Peter Vermeulen1,2, Luc Dirix1,2, Patrice Viens4, Daniel Birnbaum 3,
Gayathri R. Devi 10,11, Massimo Cristofanilli 12 and Steven Van Laere1,2

Inflammatory breast cancer (IBC) is an aggressive disease for which the spectrum of preclinical models was rather limited in the
past. More recently, novel cell lines and xenografts have been developed. This study evaluates the transcriptome of an extended
series of IBC preclinical models and performed a comparative analysis with patient samples to determine the extent to which the
current models recapitulate the molecular characteristics of IBC observed clinically. We demonstrate that the IBC preclinical models
are exclusively estrogen receptor (ER)-negative and of the basal-like subtype, which reflects to some extent the predominance of
these subtypes in patient samples. The IBC-specific 79-signature we previously reported was retrained and discriminated between
IBC and non-IBC preclinical models, but with a relatively high rate of false positive predictions. Further analyses of gene expression
profiles revealed important roles for cell proliferation, MYC transcriptional activity, and TNFɑ/NFκB in the biology of IBC. Patterns of
MYC expression and transcriptional activity were further explored in patient samples, which revealed interactions with ESR1
expression that are contrasting in IBC and nIBC and notable given the comparatively poor outcomes of ER+ IBC. Our analyses also
suggest important roles for NMYC, MXD3, MAX, and MLX in shaping MYC signaling in IBC. Overall, we demonstrate that the IBC
preclinical models can be used to unravel cancer cell intrinsic molecular features, and thus constitute valuable research tools.
Nevertheless, the current lack of ER-positive IBC models remains a major hurdle, particularly since interactions with the ER pathway
appear to be relevant for IBC.
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INTRODUCTION
Inflammatory breast cancer (IBC) is an aggressive and highly
metastatic form of breast cancer. At the time of initial diagnosis,
virtually all patients have lymph node involvement and 30%
present with distant metastases1. As a consequence of the rapid
onset and early metastasis, patients with IBC display an
unfavorable prognosis, with 5-year overall survival rates of 40%
despite multimodality treatment2–4. IBC is a clinical diagnosis
based on the rapid onset of inflammatory symptoms: patients
present with a red, enlarged breast associated with shooting pains
and warmth. In addition, skin changes (e.g., “peau d’orange”) and
nipple retraction are often observed and typically, no palpable
tumor mass is present5–7.
In 2008, the Inflammatory Breast Cancer-International Consor-

tium (IBC-IC) was established by investigators in this field, with the
ultimate aim of accelerating IBC research. The compelling need for
this alignment of researches was based on the fact that despite
many efforts over decades of research, IBC remained a poorly
characterized disease void of specific targets for molecular
therapy8. The need for better, more efficient, and IBC-specific
treatment options is underscored by the fact that there are no

significant changes in overall survival of patients up till now. In
addition, IBC can be regarded as a human model for aggressive
(breast) cancer behavior in general.
The first project of the IBC-IC involved the identification of a

molecular profile of IBC using a large multicentric series of clinical
samples. A set of 79 probe sets with an IBC-specific and molecular
subtype-independent gene expression profile was identified and
validated. Translating the IBC signature into pathways and
processes indicated that alterations in TGFβ signaling may be an
important driver9, which is confirmed in a more recent study10. In
addition, a molecular signature predicting pathological complete
response to neoadjuvant chemotherapy in IBC was identified11

and catalogs of genomic alterations were described12. In parallel,
the role of the tumor microenvironment (TME) in IBC development
and progression has been also increasingly emphasized13–18.
Additionally, efforts were also focused on developing greater
numbers of preclinical IBC models of different molecular subtypes,
allowing researchers to perform functional validations in more
versatile genetic backgrounds. Traditionally, five preclinical
models have been used for IBC research: three established cell
lines (i.e., KPL4, SUM149, and SUM190) and two xenograft models
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(i.e., Mary-X and WIBC9). The preclinical models of IBC are either
triple negative or HER2-amplified, which is reflective of the most
prevalent subtypes of this disease19–30. Within the last years, novel
IBC models have been generated amongst others by researchers
at the Fox Chase Cancer Center (i.e., FC-IBC-01 and FC-IBC-02), The
University of Texas MD Anderson Cancer Center (i.e., MDA-IBC-03),
the Thomas Jefferson University (i.e., TJ-IBC-04 and TJ-IBC-09), and
the GZA Hospital Sint-Augustinus (i.e., UA-IBC-01)31.
However, the complete molecular characterization and com-

parative analyses of these cell lines remains to be completed.
Therefore, we report here a comprehensive analysis of gene
expression data from IBC and non-IBC (nIBC) preclinical models
and patient samples. Our primary goal was to gain insight into the
molecular characteristics of the above-described IBC preclinical
models and to identify features also exhibited by IBC cells in
human tissue samples. This set of features will be crucial
knowledge when setting up functional validation experiments
for data reported in patient samples. In addition, to broaden the
clinical perspectives of this panel of IBC preclinical models, their
sensitivity profile to a wide range of therapeutic agents was
estimated using the CMap data set of 1.3 million L1000 signatures
that reflect transcriptional responses of human cells to chemical
and genetic perturbations. It stands to reason that these efforts
will also contribute to a more detailed comprehension of
biological themes intrinsic to IBC cells.

RESULTS
Cluster analysis and molecular subtyping
To investigate differences between IBC (n= 10) and nIBC (n= 22)
preclinical models, we merged expression profile analysis performed

in our Institution with external gene expression data from various
public resources (Gene Expression Omnibus: GSE12777, GSE16795,
and GSE40464; and ArrayExpress: E-MTAB-7). To assess the efficiency
of the normalization strategy, unsupervised hierarchical clustering
analysis (UHCA) was performed for all 124 profiles and for the 500
most variable genes selected by standard deviation. Results are
shown in Fig. 1a. The NbClust algorithm identified four clusters in the
data set that were significantly associated with the ER status (P<
0.001), the PR status (P< 0.001), the HER2 status (P= 0.043), the ER/
HER2 combined subtypes (P < 0.001), and the IBC/nIBC tumor
phenotype (P< 0.001). Using multinomial regression analyses, we
demonstrated that the ER/HER2 combined subtypes were the best
predictor of the clustering pattern (AIC= 59.881), followed by the ER
status (AIC= 63.195), the tumor phenotype (AIC= 70.293), the PR
status (AIC= 74.277), and the HER2 status (AIC= 82.575). A multi-
variate model containing the tumor phenotype and the ER/HER2
combined subtypes (AIC= 45.589) was significantly better in
predicting the clustering pattern as compared to the ER/HER2
combined subtypes alone (Likelihood ratio test; P< 0.001). Addition
of the PR status to the ER/HER2 combined subtypes did not improve
the accuracy of the model in predicting the clustering outcome (AIC
= 65.881; (Likelihood ratio test; P= 1.000). Given these results and
since we observed that all 32 different preclinical models cluster on
terminal branches, we argue that the adopted normalization strategy
was effective in removing batch-specific expression variation, that
relevant gene expression themes are preserved, and that replicate
gene expression profiles (GEPs) can be reliably averaged.
Averaged GEPs were then used to classify the IBC preclinical

models according to their differentiation status using the differentia-
tion predictor model (DPM), the luminal/basal/mesenchymal classi-
fication (LBM) system, and PAM50 subtypes. Results are shown in
Table 1 and demonstrated that these cell lines all adhered to the
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Fig. 1 Molecular characterization and classification of (inflammatory) breast cancer cell lines. a Dendrogram resulting from an
unsupervised hierarchical cluster analysis performed on the normalized expression data set of preclinical models prior to averaging. The
different cell lines are indicated using different colors in the annotation track underneath the dendrogram, in addition to the tumor
phenotype (blue= nIBC; yellow= IBC), the ER status (gray= ER+; black= ER−), the HER2 status (gray= HER2−; black= HER2+), the PR status
(gray= PR+; black= PR−), and the ER/HER2 combined subtypes (red= ER+/HER2−; green= ER−/HER2+; blue= ER+/HER2+; purple= ER
−/HER2−). b The classification scores of the preclinical models are shown in boxplot format. The different preclinical models are shown along
the X-axis and the Y-axis represents the posterior probability scores resulting from applying the IBC classification models. Boxes are color-
coded according to the tumor phenotype: blue= nIBC and yellow= IBC.
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basal-like subtype. The majority of the IBC cell lines exhibited a
luminal progenitor phenotype (i.e., 7/10) and with respect to the
PAM50 classifications, the ER-negative subtypes predominated (i.e.,
9/10 basal-like, HER2-enriched or normal like). Notably, all classifica-
tion distributions, except for the DPM classification (P= 0.072) and
the HER2 status (P= 0.222), are significantly different compared to
those obtained in nIBC preclinical models (Table 1).
Then, in order to investigate if the IBC preclinical models

recapitulate biological features typical of IBC in clinical samples,
we applied the transcriptomic classifier9 consisting of 79 genes
with an IBC-specific expression profile on all 32 preclinical models.
An elastic net generalized linear model achieved an accuracy of
82% on an independent series (Supplementary Fig. 1). When
applied to the series of averaged GEPs of IBC and nIBC preclinical
models, an accuracy of 78% was obtained, with a sensitivity and
specificity of respectively 100% and 68%. The latter indicated a
high rate of false positive predictions amongst the nIBC models
(McNemar test; P= 0.023), particularly when compared to the
patient samples data, where a specificity level of 86% was
observed. By consequence, also the positive predictive value was
low (i.e., 59%). Another notable observation relates to the fact that
when the model was applied onto the replicate GEPs, low
posterior probability scores (i.e., close to 0.5) were repeatedly
observed for some IBC preclinical models (i.e., SUM149, SUM190,
and MDA-IBC-3). All data are shown in Fig. 1b.
To further assess the representativity of the cell lines as models

for IBC, the GEPs of UA-IBC-01 and the primary tumor sample it
was derived from were directly compared. Both the model and the
tumor sample were classified as non-luminal, HER2-enriched
according to the PAM50 molecular subtypes despite the use of
estrogen pellets during the generation of the UA-IBC-01 PDX-
derived cell lines. Gene-wise comparison revealed that both GEPs
are strongly correlated (Rs= 0.740; P < 0.001; Supplementary Fig.
2). Out of 12,384 genes expressed above background in both
samples, 295 genes were considered overexpressed in the UA-IBC-
01 cell line based on expression differences superior to the 97.5th
percentile of all gene-wise comparisons. These genes were
enriched for hallmark gene sets related to cell proliferation (i.e.,
E2F target genes: P < 0.001; and G2M checkpoint genes: P < 0.001).
Based on expression differences inferior to the 2.5th percentile of
all gene-wise comparisons, 254 genes were considered over-
expressed in the primary tumor sample, and these were enriched
for gene sets related to immune response programs (i.e., IFNɣ
signaling: P= 0.007; and TNFɑ signaling: P= 0.003) and epithelial-
to-mesenchymal transition (P < 0.001), which is consistent with the
expected enrichment of stroma and immune cells in the primary
tumor sample. Interestingly, hallmarks related to hormone
receptor signaling (i.e., early estrogen response genes: P= 0.012;
late estrogen response genes: P= 0.002; and androgen response

genes: P= 0.003) are also enriched amongst genes overexpressed
in the primary tumor sample.

Differential expression and co-expression network analysis
To identify molecular differences between IBC and nIBC preclinical
models, two strategies were applied. First, IBC and nIBC cell lines
were compared using generalized linear models to identify
differentially expressed genes (DEGs). Hence, 931 DEGs were
revealed of which 437 (47%) and 494 (53%) were respectively up-
and downregulated in IBC at a false discovery rate of 10%. Results
are shown in volcano plot format in Fig. 2a. Differential gene
expression statistics are provided in Supplementary Data 1. The
resulting fold change vector was then used to perform GSEA for
the hallmark gene sets. Results are shown in Supplementary Table
1 and reveal that DEGs overexpressed in IBC cell lines were
enriched for gene sets related to IL2/STAT5-, KRAS-, or TP53-
signaling and MYC target genes, whereas EMT-related genes were
enriched amongst downregulated DEGs.
In a second strategy to characterize the IBC preclinical models,

weighted gene co-expression network analysis (WGCNA) was
applied onto the averaged GEPs. Using data for all available genes,
22 distinct gene co-expression modules were identified with sizes
ranging from 104 to 871 genes. Details regarding the network
construction and module detection are shown in Supplementary
Fig. 3 and different co-expression module statistics are summar-
ized in Table 2. The correlation structure of the 22 co-expression
modules was investigated and revealed the existence of three co-
expression clusters (Fig. 2b). Gene set enrichment analysis (GSEA)
of the gene-module memberships (GMM) scores (Supplementary
Data 2) revealed distinct hallmark enrichment patterns for each of
these co-expression clusters (Fig. 2c), suggesting they reflect
different biological themes.
The extent to which each of the co-expression modules is

preserved in the gene expression series of the nIBC preclinical
models was investigated (Table 2). The highest preservation score
was obtained for the module containing ERBB2 (i.e., M12), most
likely reflecting the presence of ERBB2+ cell lines in both IBC and
nIBC series. The module containing ESR1 (i.e., M10) was poorly
conserved (i.e., preservation score inferior to 2), probably due to
the fact that all IBC preclinical models are ER-negative and thus the
ER-related expression patterns in IBC preclinical models are weaker
than in nIBC. Overall, the IBC co-expression modules contained in
the 2nd co-expression cluster, which were associated with
amongst others MYC, NFκB, and Hedgehog signaling (Table 2),
were most weakly conserved in nIBC cell lines (i.e., average
preservation score per cluster group: C1= 6.753; C2= 3.270; and
C3= 4.390), suggesting that these gene clusters reflect biological
themes that are more intrinsic to IBC. This is corroborated by the

Table 1. Molecular characteristics of IBC models.

IBC model ER PR HER2 ER/HER2 LBM classification DPM classification PAM50 subtype

FCIBC01 NEG NEG NEG TN Basal Progenitor Normal

FCIBC02 NEG NEG NEG TN Basal Progenitor Basal

KPL4 NEG NEG POS HER2 Basal Progenitor Her2

MaryX NEG NEG NEG TN Basal Progenitor Basal

MDAIBC3 NEG NEG POS HER2 Basal Mature LumA

SUM149 NEG NEG NEG TN Basal Progenitor Basal

SUM190 NEG NEG POS HER2 Basal Mature Her2

TJIBC04 NEG NEG NEG TN Basal Progenitor Basal

TJIBC09 NEG NEG POS HER2 Basal Mature Her2

UAIBC01 NEG NEG POS HER2 Basal Progenitor Her2

P value (compared to nIBC) 0.011 0.013 0.222 0.001 0.001 0.072 0.006
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enrichment of genes overexpressed in IBC cell lines (vide supra) in
4/8 of the co-expression modules in the 2nd co-expression cluster
(Table 2). Finally, based on the correlation structure of the 22 co-
expression modules (Fig. 2b) and their cell line-specific expression
levels, a network-based prioritization of the co-expression modules
was performed. A minimal set of five co-expression modules
connecting all IBC cell lines was identified (i.e., M1, M2, M7, M8, and
M9), all but one belonging to the 2nd co-expression cluster (Fig.
3a).

Identification of co-expression cluster regulators and
antagonizing chemical compounds
Based on the co-expression modules analysis, we then aimed to
identify potential modulators of IBC biology as well as potential
drug/target combinations for therapy using the CMAP data set.
Connectivity Scores (CSs) are provided in Supplementary Data 3
for all comparisons. As a proof-of-concept, we focused on the CSs
of RELA and MYC and demonstrate that knockdown of these
transcription factors induced a gene expression profile that was
opposite to the characteristic expression profile of the gene co-
expression modules enriched for genes involved in NFκB and MYC
signaling respectively (Table 2 and Supplementary Fig. 4). In
addition, we also evaluated all E2F transcription factors (i.e., E2F1
to E2F9) and revealed that particularly the CSs associated with
E2F3 knockdown were reduced in those expression modules

enriched for E2F target genes. For other E2F transcription factors,
no clear association was observed.
We then focused on the set of five co-expression modules (M1,

M2, M7, M8, and M9) linking all 10 IBC cell lines to reveal potential
regulators and drug/target combinations. According to published
literature, several of the identified regulator genes (Fig. 3b) were
related to MYC activity (i.e., BAMBI, CD40, CDKN1A, CDKN2C, CDX2,
E2F6, HOXA9, HOXB13, KLF6, POU5F1, and WWTR1/TAZ), often in
conjunction with WNT signaling, TGFβ signaling or stem cell
biology. In addition, 31 potentially effective drug/target combina-
tions were identified involving 13 distinct targets and 26 different
drugs (Fig. 3c). Unfortunately, no single target/drug combination
was predicted to be effective in all five co-expression modules and
no target/drug combination meeting our criteria was identified for
M7. Remarkably, for M9 that connects to TJ-IBC-09, our data
suggested sensitivity to anti-hormonal drugs.

MYC expression and transcriptional activity in IBC patient
samples
Our results in the preclinical models described above suggested
that MYC could be an important driver of IBC biology. To
corroborate these data, MYC-related molecular changes were
evaluated in our series of 146 and 252 expression profiles from IBC
and nIBC tissue samples9. As shown in Fig. 4a, MYC expression was
dependent on the ER status defined by stratifying ESR1 mRNA

Fig. 2 Identification of molecular differences between IBC and nIBC preclinical models. a Volcano plot representing gene expression
differences between IBC and nIBC preclinical models. The X-axis indicates the log2-transformed gene expression fold change in IBC relative to
nIBC. The Y-axis represents the −log10-transformed p value. The horizontal dashed line represents a nominal P value threshold of 5%. Genes
color-coded yellow and blue are overexpressed in IBC and nIBC respectively at a false discovery adjusted p value of 10%. The top 10
overexpressed genes in IBC and nIBC cell lines are labeled. b Heatmap representing the correlation structure of 22 co-expression modules
identified using WGCNA. Pearson correlation coefficients resulting from pairwise comparisons of the eigengenes of the different co-
expression modules are coded according to a blue-red color scheme reflecting correlation coefficients ranging from −1 to 1. Row and
columns are labeled with the names of the co-expression modules and are ordered according to an unsupervised hierarchical cluster analysis.
The three co-expression cluster groups are indicated in orange squares. c Dot plot representing the result of a gene set enrichment analysis
(GSEA) obtained by comparing the gene-module membership scores for each co-expression cluster to the hallmark gene sets. The co-
expression modules are listed along the X-axis and a different facet is created for each co-expression cluster. Enriched hallmarks per modules
are indicated using a dot, the color and size of which vary with respectively the normalized enrichment score (i.e., blue= low; red= high) and
the −log10-transformed p value (i.e., small= less significant; large=more significant) that result from the GSEA.
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levels into low, moderate, and high expression categories (P <
0.003). When comparing IBC to nIBC, no significant difference in
MYC expression was observed (P= 0.209). However, when
stratifying by ER status, MYC expression was significantly different
between IBC and nIBC (P= 0.049). Correlation analysis (Fig. 4b)
revealed a significant inverse relation between ESR1 and MYC
expression in nIBC (Rs=−0.331; P < 0.001). Similar correlations
were also noted in the TCGA and METABRIC series that primarily
consist of nIBC tissue samples (TCGA: Rs=−0.250; P < 0.001;
METABRIC: R=−0.222; P < 0.001; data not shown). In IBC however,
a different correlation pattern was observed (Rs= 0.115; P=
0.166), suggesting different interactions between ER and MYC
depending on the tumor phenotype. A generalized linear model
testing for such interactions, demonstrated that MYC expression in
nIBC indeed decreased with increasing ESR1 levels (i.e., decrease
with 0.754 and 0.931 expression units in respectively the ER
moderate and high categories relative to the ER low category; all
Ps < 0.001). Results are shown in Fig. 4c, in which the first two
columns represent the ER moderate and ER high categories in
nIBC. In IBC samples with low ESR1 levels, MYC expression was
0.832 units lower as compared to nIBC samples with similar ESR1
mRNA levels (P < 0.001; third column in Fig. 4c) and MYC
expression increased by 0.599 and 1.414 expression units in
respectively the ER moderate and high categories (P= 0.035 and
P < 0.001 respectively; fourth and fifth column in Fig. 4c). To
evaluate differences in MYC transcriptional activity between IBC
and nIBC samples, a similar analysis was performed using
activation scores calculated using GSVA based on three different
published MYC activation signatures32–34. Hence, we noticed that

differences in MYC transcriptional activity followed the same
trends as those described for MYC expression, with the exception
that MYC transcriptional activity was not different between IBC
and nIBC samples with low ER expression (Fig. 4c).
To evaluate potential confounding effects in the reported

observations, MYC expression and transcriptional activation were
first compared between samples stratified by tumor stage and the
PAM50 subtypes. Significant MYC expression and activation
differences according to the strata of both classification systems
were observed (Supplementary Figs. 5, 6). Incorporating tumor
stage or the PAM50 subtypes separately as blocking variables into
each of the generalized linear models described above, revealed
that tumor stage did not confound the observed interaction
differences of ER and MYC between IBC and nIBC. The
PAM50 subtypes on the other hand did account for the overall
effect of ER on MYC expression or activation, but the IBC-specific
associations between ER and MYC remain significant in 3/4
comparisons. Results, comparing the original with the blocked
regression models for each MYC-related feature, are shown in
Supplementary Table 2.

Expression analysis of proximal MYC network members
To provide additional context to the role of MYC in IBC biology,
expression levels of genes belonging to the Proximal MYC
Network (PMN) and that modulate MYC target gene binding
and expression35, were investigated. With the exception of MYC
itself, mRNA levels for only seven members were available in the
series of 10 IBC cell lines and the correlation plot is shown in

Table 2. Characteristics of co-expression modules.

Module Cluster Size Hallmark Preservation
Z-Score

Enrichment OR Enrichment P CS-MYC CS-RELA CS-E2F3

M1 C2 240 HALLMARK_TNFA_SIGNALING_VIA_NFKB 0.585 1.861 0.005 1.660 −85.880 96.080

M2 C2 218 HALLMARK_MYC_TARGETS_V1 0.999 1.061 0.457 −97.950 74.690 −1.980

M3 C2 247 HALLMARK_TNFA_SIGNALING_VIA_NFKB 1.302 1.699 0.015 0.000 −85.490 85.200

M4 C2 786 HALLMARK_MYC_TARGETS_V2 14.426 1.238 0.087 −99.920 −48.210 −60.190

M5 C2 301 HALLMARK_HEDGEHOG_SIGNALING 0.789 2.055 0.000 −5.280 −53.350 15.470

M6 C2 261 HALLMARK_MYC_TARGETS_V2 2.265 1.227 0.234 −93.060 −68.860 −4.220

M7 C2 265 HALLMARK_TNFA_SIGNALING_VIA_NFKB 0.499 1.201 0.260 27.110 −97.240 97.920

M8 C2 871 HALLMARK_TNFA_SIGNALING_VIA_NFKB 5.296 0.577 0.999 −91.210 −52.110 95.200

M9 C1 300 HALLMARK_PROTEIN_SECRETION 9.715 1.281 0.166 99.950 −49.330 −23.640

M10 C1 106 HALLMARK_INTERFERON_ALPHA_RESPONSE 1.786 0.935 0.623 63.750 67.590 2.580

M11 C1 584 HALLMARK_OXIDATIVE_PHOSPHORYLATION 2.656 0.441 1.000 1.660 65.330 6.430

M12 C1 558 HALLMARK_INTERFERON_ALPHA_RESPONSE 20.433 0.771 0.919 99.890 42.620 68.760

M13 C1 199 HALLMARK_XENOBIOTIC_METABOLISM 7.593 0.393 0.994 40.460 65.830 57.160

M14 C1 260 HALLMARK_P53_PATHWAY 6.725 1.159 0.312 99.820 −45.060 1.870

M15 C1 680 HALLMARK_E2F_TARGETS 4.575 0.619 0.995 16.280 95.900 −99.870

M16 C1 141 HALLMARK_E2F_TARGETS 0.537 1.882 0.023 0.000 96.340 5.800

M17 C3 104 HALLMARK_E2F_TARGETS 0.255 0.944 0.613 −12.390 96.070 −16.430

M18 C3 238 HALLMARK_E2F_TARGETS 5.279 2.363 0.000 31.780 −15.840 −77.750

M19 C3 157 HALLMARK_G2M_CHECKPOINT 1.118 0.502 0.967 0.000 71.370 −92.310

M20 C3 124 HALLMARK_E2F_TARGETS 3.928 0.644 0.881 −34.090 92.410 −6.250

M21 C3 148 HALLMARK_E2F_TARGETS 0.541 1.121 0.413 −97.320 78.410 −94.160

M22 C3 394 HALLMARK_E2F_TARGETS 15.215 0.728 0.925 −99.580 95.660 −91.000

Module Gene co-expression module, Cluster cluster to which the co-expression module belongs, Size the number of genes in the module, Hallmark top
enriched hallmark in the module, Preservation Z-score the z-score that defined how significantly a module is conserved in nIBC with values below 2, between 2
and 10 and above 10 indicating respectively poor, moderate, and good preservation, Enrichment OR odds ratio for enrichment of genes differentially expressed
between IBC and nIBC cell lines in the module, Enrichment P p value corresponding to the Enrichment OR, CS-MYC connectivity score between transcriptional
profile of MYC knockdown and the module specific expression profile, CS-RELA connectivity score between transcriptional profile of RELA knockdown and the
module specific expression profile, CS-E2F3 connectivity score between transcriptional profile of E2F3 knockdown and the module specific expression profile.
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Fig. 5a. This reveals that expression levels MAX (i.e., the primary
interaction partner of MYC; P= 0.099) and MLX (i.e., MAX-like
protein, another dimerization partner of MYC; P= 0.053) were
positively correlated with MYC, whereas a negative correlation was
reported for MXD3 (i.e., MYC competitive MAX dimerization
partner; P= 0.001). These relationships were recapitulated in a
series of 146 samples from patients with IBC (i.e., correlation
P values for MAX: P= 0.005, MLX: P < 0.001 and MXD3: P= 0.027;
Fig. 5b). In addition, an inverse relation between MYC and MYCN
(i.e., another member of the family of MYC transcription factors)
was noted (P= 0.016). In general though, the correlation strengths
among the PMN members observed in tissue samples were
weaker as compared to those obtained in cell lines, possibly owing
to confounding effects of ER expression and stromal admixture.
Finally, in the series of IBC patient samples, we demonstrated

that MYC transcriptional activation, calculated based on the target
gene set published by Muhar et al.32 was positively associated to
MYC (P < 0.001), NMYC (P= 0.017), MLX (P= 0.045) and MXD3
(P < 0.001) and negatively to MAX (P < 0.001). Identical results
were obtained for the MYC transcriptional activation scores
calculated using the two remaining gene sets (data not shown).
Figure 5C, D show the strong linear relationship between MYC
expression and MYC transcriptional activation but also identify a
set of outlier samples in which MYC transcriptional activation was
associated with elevated mRNA levels of either MXD3 of NMYC
rather than MYC itself.

DISCUSSION
The primary goal of the current study was to gain insight into the
molecular characteristics of ten IBC cell lines and to determine to
what extent these preclinical models reflect genuine IBC biology.
Therefore, gene expression data of IBC preclinical models were
integrated with publicly available expression data of nIBC
preclinical models. Data set-dependent bias was efficiently
removed by normalization as shown by the clustering of replicate
samples on terminal branches and by the fact that biologically
relevant expression themes, such as those related to the ER and
HER2 status of the cell lines, were not compromised. To further limit
the effect of gene expression fluctuations associated with passage
number, different culture conditions or other stochastic variables,
the molecular profile of each preclinical model in this study was
defined as the average of several replicates, except for the UA-IBC-
01 cell line for which only one expression profile was available.
Based on the resulting data set, we observed that all IBC cell lines

adhere to the basal-like subtype and 7/10 had a luminal progenitor
phenotype. This agrees with the fact that all IBC cell lines are ER-
negative and demonstrates that the degree of molecular hetero-
geneity in the present series of IBC preclinical models is restricted
as compared to the nIBC cell lines in which all subtypes and
differentiation states are represented. Similar conclusions could be
drawn when evaluating the distribution of the PAM50 subtypes,
with 8/10 IBC cell lines being either basal-like or HER2-enriched.

Fig. 3 Identification of co-expression cluster regulators and antagonizing chemical compounds. a Network diagram showing the minimal
set of edges that connect all co-expression modules and cell lines and that were identified using a minimal spanning tree analysis performed
on the binary adjacency matrix representing the full set of interactions between all modules and all cell lines. Co-expression modules and cell
lines are indicated respectively as diamonds labeled by module number (i.e., M1 to M22) and circles labeled by cell line name. The edges
connecting all cell lines through a minimal set of co-expression modules are indicated in red. b Results identifying upstream regulators (Y-axis)
for each of the five co-expression modules that connect all IBC cell lines (X-axis) are shown in heatmap format. At the intersection between
rows and columns, cells are color-coded as shown in the legend only when the difference between the co-expression module specific
connectivity Scores (CSs) for overexpression and knockdown of the respective genes exceeds 150 (i.e., at least 75 upon overexpression and at
most -75 upon knockdown). c Results identifying target/drug combinations (Y-axis) for each of the five co-expression modules that connect all
IBC cell lines (X-axis) are shown in heatmap format. At the intersection between rows and columns, cells are color-coded as shown in the
legend only when the difference between the co-expression module specific CSs for overexpression of the drug target and drug treatment
exceeds 150 (i.e., at least 75 upon overexpression of the target and at most −75 upon treatment).
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These results can be explained by the dominance of the basal-like
and HER2-enriched subtypes in IBC tissue samples9,36. However,
they also clearly reveal the paucity in ER+, luminal-type preclinical
IBC models despite the fact these subtypes account for roughly
30–40% of the patient samples14,37. Another intriguing observation
is the absence of the mesenchymal subtype in the panel of IBC cell
lines, which is unexpected due to the metastatic potential often
associated with this subset of breast cancer cells, but agrees with
the reported overexpression of E-Cadherin in IBC cells and thus
their presumed epithelial phenotype38.
Next, we aimed to evaluate to what extend the current series of

IBC preclinical models is representative for IBC biology. Therefore,
we applied a classification model based on 79 genes with IBC-
specific expression patterns9 onto our preclinical model series.
Overall, the prediction accuracy was acceptable (i.e., 78%), but
positive predictive value was limited (i.e., 59%) indicating that the
model was not reliable in correctly predicting the IBC status of the
models or that the models do not fully represent the clinical
disease but only limited aspects of it. In an additional analysis, we
observed that overexpression patterns in nIBC were maintained
between cell lines and tissue samples, but not those from IBC cell
lines (data not shown). This result suggests that separation of IBC
and nIBC cell lines based on the transcriptomic classifier is mainly

driven by the nIBC marker genes. A possible explanation for the
lack of predictive power associated with the IBC marker genes in
this analysis relates to differences between IBC and nIBC associated
with the tumor (immune) microenvironment13–15,39 that are not
recapitulated in the data set of the preclinical models. Indeed, 67%
of the IBC marker genes that are part of the IBC-specific
transcriptomic signature demonstrate elevated expression in the
profiles of immune and endothelial cells of the Human Tissue
Compendium relative to those of epithelial cells (data not shown).
This conclusion is further corroborated by a direct comparison of
the GEPs of the UA-IBC-01 cell line and the primary tumor sample it
is obtained from. Although expression differences are limited and
cancer cell intrinsic expression themes appear to be preserved in
the preclinical model, enrichment of gene sets associated with
immune response programs in the primary tumor sample were
noted. Together, these data again underscore the importance of
the TME in IBC biology, but they do not preclude the utility of the
preclinical models to uncover IBC cell intrinsic features and
numerous efforts are underway to incorporate immune features
into programs for the development of IBC preclinical models. With
respect to the latter, the use of estrogen supplementation should
be carefully considered, as modest differences in gene expression
of estrogen response genes were noted between UA-IBC-01 and its

Fig. 4 MYC expression and transcriptional activity in patient samples in function of ESR1. a MYC expression levels (Y-axis) in a data set of
146 IBC and 252 nIBC tissue samples classified according to the ER status, calculated by stratifying ESR1 mRNA levels into low, moderate, and
high categories. Data are represented in notched boxplot format and color-coding according to the legend shown underneath the plot.
P values resulting from the pairwise comparison of the MYC expression distributions between the different tumor sample categories are
indicated. b Scatter plot comparing ESR1 and MYC expression, represented in the X- and Y-axis respectively, in nIBC (left) and IBC (right)
patient series. For each series, a trend line is plotted and the resulting Spearman correlation coefficients are shown in the top left corner.
c Heatmap representing the result of a generalized linear regression analysis evaluating MYC expression levels (i.e., top row) and MYC
transcriptional activation calculated using the gene sets published by Muhar et al., Gatza et al. and Bild et al. (i.e., bottom 3 rows) in function of
the tumor phenotype (i.e., IBC vs. nIBC) and interactions thereof with different strata of ER expression. For each of the resulting categories,
shown along the X-axis (i.e., nIBC—ER Moderate, nIBC—ER High, IBC—ER Low, IBC—ER Moderate, and IBC—ER High), regression coefficients
representing the change in MYC expression or MYC transcriptional activity in that category relative to nIBC samples with low ER expression,
are color-coded as shown in the legend. The heatmap for example shows that MYC expression (i.e., top row) in nIBC samples with high ER
levels (i.e., 2nd column) decreases significantly (i.e., blue color) as compared to nIBC samples with low ER expression, whereas relative to the
same category the MYC expression in IBC samples with high ER levels increases significantly. P values evaluating the significance of the
changes are indicated in each cell.
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corresponding primary tissue sample. However, since gene
expression changes are not in line with the expected results, this
observation requires further investigation.
To further delineate the defining principles of IBC biology, two

distinct analysis strategies were undertaken. First, DEGs between
IBC and nIBC cell lines were identified. Second, WGCNA was
applied to detect modules of co-expressed genes in the series of
IBC cell lines only. In both analyses, confounding variables such as
ER status and the molecular subtypes were not taken into account
for two reasons. First, our data set was too small to perform
multivariate analyses. Second, since all the IBC preclinical models
are ER-negative and of the basal-like subtype, it is impossible to
reliably differentiate between gene expression patterns intro-
duced by the tumor phenotype on the one hand and other
sources of latent variation on the other hand. It should be noted
that the inability to account for covariates represents a debilitating
factor in our analysis. Regardless, both strategies pointed at
important roles for cell proliferation (e.g., hallmarks E2F target
genes and G2M checkpoint), MYC transcriptional activity and
inflammatory response programs (e.g., hallmarks IL2/STAT5 and
TNFɑ/NFκB) in the biology of IBC. Furthermore, the WGCNA
approach revealed that several of these processes are jointly
regulated. For example, MYC and NFκB target gene expression
were the dominant themes in the second co-expression cluster,
which suggests an intricate relationship between both transcrip-
tion factors in shaping IBC biology. NFκB activation in IBC has

been reported previously29,40–42, and MYC and NFκB have been
shown to cooperate in breast cancer development and progres-
sion43–46, amongst others by modulating stem cell behavior. By
comparing gene co-expression clusters to the L1000 profiles of the
CMAP database, we also revealed sets of potential regulators and
target/drug combinations. Unfortunately, no single drug with
predicted efficacy across all IBC cell lines was identified. This may
reflect inherent heterogeneity in the signal transduction networks
of the individual IBC cells, limited specificity of the CMAP profiles
that are generated using a broad collection of cancer cell lines and
thus are not reflective of breast cancer specific transcriptional
responses, or the failure to identify robust and highly specific IBC
co-expression modules due to the limited size and relative
homogeneity (i.e., all ER-negative and basal-like samples) of the
series of IBC preclinical models. Nevertheless, our results
constitute a good starting point to evaluate novel treatment
strategies in preclinical IBC research.
The fact that MYC target genes were overexpressed in IBC cell

lines and were associated with specific co-expression modules
suggests that MYC transcriptional activity is an important
characteristic of IBC biology at least in preclinical models. This is
corroborated by earlier work of Zhang et al. who demonstrated
that MYC is a central hub in the signal transduction networks of
SUM149 and SUM19047. In addition, we recently showed that MYC
mediates the specific response of IBC cells to TGFβ1 treatment10.
To confirm these observations, MYC expression and transcriptional

Fig. 5 Expression analysis of proximal MYC network members. a Heatmap showing the correlation structure of the proximal MYC network
members in IBC cell lines. The proximal MYC network members are indicated along both X- and Y-axes and ordered similarly based on the
output of a Ward clustering analysis. Correlations are coded according to a blue-red coloring scheme representing negative to positive
correlation coefficients respectively. Correlation values are provided in the corresponding cells. b MYC correlation analysis for the proximal
MYC network members in a series of 146 IBC patient samples. The proximal MYC network members and strength of the correlation between
their expression and MYC mRNA levels are shown along the X- and Y-axis respectively. Each correlation coefficient is indicated by a dot, coded
according to a blue-red coloring scheme representing negative to positive correlation coefficients respectively and correlation values are
provided inside. Significant values are indicated with a blue diamond. c, d Scatter plots comparing MYC expression (X-axis) and MYC
transcriptional activity (Y-axis) calculated according to the gene set published by Muhar et al. in a series of 146 IBC samples. Each sample is
represented by a point, which is colored red if the corresponding sample is characterized by MXD3 (c) or NMYC (d) expression values
exceeding the 90th percentile. A regression line depicting the linear relationship between MYC expression and transcriptional activity is
indicated and results of the Spearman correlation analysis are provided in the top left corner.
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activation were explored using GEPs from IBC and nIBC tissue
biopsies. Our data demonstrate that the levels of MYC expression
and transcriptional activation in relation to ESR1 expression exhibit
opposite patterns in IBC and nIBC with an ER-dependent decrease
and increase in mRNA levels of both MYC and MYC target genes in
nIBC and IBC respectively. Particularly the positive association
between ER and MYC expression or transcriptional activation in
IBC is notable, as it remains significant even when accounting for
tumor stage and the PAM50 subtypes and thus cannot be
attributed solely by the enrichment of the Luminal B phenotype
amongst ER+ IBC tissue biopsies. This observation is in line with
earlier results showing that MYC is a common denominator of
biological processes active in ER-positive IBC48. The induction of
MYC activity in ER-positive IBC may provide an explanation for the
hormone therapy resistance phenotype often associated with
IBC49. Miller et al. illustrated that a gene signature of breast cancer
cells with acquired hormone independence and predictive of
resistance to hormonal therapy reflects MYC pathway activation50.
Importantly, these data re-emphasize the need for ER+ luminal-
type preclinical models of IBC. It stands to reason that inclusion of
such models in our present analysis would further amplify the
here reported MYC-related differences.
Recently, we reported that MYC was frequently affected by

genomic alterations in a series of 101 IBC tissue biopsies12 and
Faldoni et al. reported frequent gains covering the MYC gene in
IBC, with a concomitant MYC protein overexpression in IBC patient
samples51. We performed a meta-analysis of published data12,52–56

and demonstrate that the frequency of MYC genomic alterations
in primary IBC is 23% (95% CI: 13–33%) vs. 30% (95% CI: 24–37%)
in a subtype matched nIBC series consisting of METABRIC and
TCGA samples respectively. This reveals that MYC genomic
alterations are not specifically enriched in IBC. Therefore, we
hypothesize that other mechanisms of MYC activation in IBC are
operational and the present data contribute to earlier observa-
tions linking MYC in IBC to signaling pathways involved in
developmental biology12,57. Here, we show that some co-
expression modules associated with MYC target gene expression
are additionally related to WNT or Hedgehog signaling, and that
many of the upstream regulators for these co-expression clusters
are also involved in these pathways (i.e., BAMBI, E2F6, HOXB13,
and WWTR1/TAZ) or in plain stem cell biology (i.e., CDX2, HOXA9,
KLF6, and POU5F1). Interestingly, a SNP (rs6983267) located at
8q24 close to the MYC locus, is known to exhibit enhanced
binding properties for the WNT effector TCF4 and can be directed
to the MYC locus through chromatin loops allowing for WNT/
TCF4-dependent MYC expression. In addition, the rs6983267
genotype is associated with metastatic risk in IBC but not in nIBC,
suggesting that MYC is also involved in cancer cell dissemination
in IBC58. In line with this, MYC expression levels are predictive of
reduced distant metastasis-free survival in patients with ER-
positive IBC48 and have shown to be associated with metastasis in
ER-positive metastatic breast cancer59,60. Apart from stem cell
signaling pathways, also signals from the TME could be involved in
modulating MYC signaling. In this context, MYC has been shown
to be a target gene of the NFκB transcription factor RELA43,61 that
orchestrates cellular responses to pro-inflammatory cues. Finally,
we want to draw attention to the fact that in a small subset of IBC
samples, the activation of the MYC pathway was apparently
associated with NMYC and MXD3, which have been shown to
jointly regulate cell proliferation in cerebellar granule neuron
precursors, downstream of Hedgehog signaling62. This indicates
that MYC biology in IBC is complex and involves different PMN
members.
In conclusion, in this study we demonstrate that the currently

available preclinical models of IBC recapitulate to some extent the
molecular features of IBC cells in patient samples, and thus
constitute valuable research tools. However, it should be noted
that the present panel of IBC models do not fully recapitulate the

molecular heterogeneity seen in patient samples. Particularly, the
lack of hormone sensitive, luminal-type preclinical models for IBC
is worrisome, since data indicate that ER may contribute to IBC
biology in a specific manner as shown by the ER-dependency of
MYC expression and transcriptional activity in patient samples. By
consequence, the lack of ER expressing IBC cell lines represents
one of the major limitations associated with the present study,
particularly in the comparison of IBC and nIBC cell lines in which
the influence ER positivity on differences in gene expression could
not be assessed. A second limitation of this study and of the
presented series of preclinical models in general relates to the
absence of the specific immune contexture, which is now being
increasingly accepted as a hallmark of IBC biology. However, it
should be noted that signatures of activated immune response
pathways prevail in IBC cells as intrinsic properties, possibly
reflecting past interactions between IBC cells and an inflamed
tumor microenvironment. Finally, the rather limited size of the
series of IBC cell lines, which impacts on statistical power, implies
that additional and more subtle molecular features of IBC cells
may yet be undetermined. We argue that researchers need to be
aware of these limitations, allowing their appropriate considera-
tion in the design of preclinical experiments to maximize the
translatability of research results into daily patient care.

METHODS
This study was approved by the local review board of the GZA Hospitals
and each patient gave written informed consent.

UAIBC01 PDX model
The UAIBC01 PDX model was generated in collaboration with Oncotest Gmbh
(Freiburg, Germany). Briefly, metastatic tumor tissue from a patient with
hormone receptor-negative and HER2-amplified IBC was subcutaneously
implanted in NOD-SCID mice with estrogen pellets and serially passaged in
nude mice. Tissue samples obtained after the fourth passage were processed
for molecular analysis. Information on the clinical and pathological
characteristics of the patient from which this IBC cell line and the other
nine IBC models were derived, can be found in Supplementary Table 3.

Gene expression data from cell lines
We profiled a series of nine IBC (i.e., SUM149, SUM190, KPL4, Mary-X,
MDAIBC03, FCIBC01, FCIBC02, TJIBC04, and TJIBC09) and three nIBC (i.e.,
MCF7, MDAMB231, and SUM159) preclinical models at least in triplicate using
Affymetrix HGU133plus2 GeneChips. Using the same platform, an additional
gene expression profile (GEP) of our in-house generated PDX model for IBC
(i.e., UAIBC01) was generated and included in the study, yielding a total of 57
GEPs. The SUM149, SUM190, KPL4 and MDAIBC03 cells were a kindly gift
from MD Anderson Cancer Center, TX, USA. The FCIBC01, FCIBC02, TJIBC04,
and TJIBC09 cells were a kindly from M.C. and the Mary-X model from Dr.
Barsky. The nIBC cell lines were purchased from ATCC (Manassas, USA).
To expand the group of nIBC preclinical models, four additional gene

expression data sets generated using the Affymetrix HGU133 series were
retrieved from public resources (Gene Expression Omnibus: GSE12777,
GSE16795, and GSE40464; and ArrayExpress: E-MTAB-7). Expression data for
19 extra nIBC models was avalaible, i.e., BT-20, BT-474, BT-483, BT-549, CAMA1,
HCC1937, HS578T, MDAMB134VI, MDAMB175VII, MDAMB361, MDAMB415,
MDAMB436, MDAMB453, MDAMB468, SKBR3, T47D, UACC812, ZR751,
ZR7530. To reduce technical bias due to interlaboratory variability in these
data sets, only cell lines that were profiled at least in triplicate were included.
In total, 124 expression profiles of 32 different breast cancer models (i.e., 10
IBC models and 22 nIBC models) from five different data sets were included.
For each individual data set (N= 5), expression data were normalized

using the Robust Multi-array Averaging algorithm with correction for GC
probe content (BioConductor package gcrma—v.2.60.0) and probe sets
with a fluorescence intensity above log2(100) in at least two samples were
included. The individual data sets were then merged based on the
common probe sets (N= 10,961) and batch effects were removed using
empirical Bayesian methods (i.e., the combat function implemented in the
BioConductor-package sva—3.36.0), with protection of cell line-specific
variation in gene expression. The resulting data set was then subjected to
quantile normalization and probe set redundancy was removed by
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retaining the probe set with the highest standard deviation per gene for a
total of 7182 unique genes. As a final step, replicate GEPs were averaged.

Gene expression data from patient samples
Gene expression data from 146 IBC and 252 nIBC tissue samples have been
described earlier9. However, in this study, raw GEPs were reprocessed
using a similar normalization strategy as described for the preclinical
models in order to ensure data comparability. Batch effects due to the
inclusion of samples from three distinct sites (i.e., MD Anderson, Institut
Paoli-Calmettes and GZA Hospitals Sint-Augustinus) were removed using
empirical Bayesian methods. The final processed data set contained 12,769
probes sets for 8086 unique genes. Finally, breast cancer gene expression
data from the TCGA (Firehose legacy) and METABRIC series were
downloaded from the cBioPortal for cancer genomics (https://www.
cbioportal.org) using the R package cgdsr (v.1.3.0).

Unsupervised analysis
UHCA was performed using Manhattan distance as dissimilarity metric and
Ward clustering as the dendrogram drawing method. Prior to cluster
analysis, data were centered and scaled to unit variance. The optimal
number of clusters, ranging from 2 to 10, was determined by evaluating
cluster separability based on 30 distinct indices (BioConductor package
NbClust—v.3.0). The clustering scheme that was supported by the majority
of these indices was selected.

Classification
Preclinical models and patient samples were classified according to the
PAM50 molecular subtypes63 using the BioConductor package genefu
(v.2.20.0). Furthermore, the preclinical models were classified according to
the ER status, the PR status, the HER2 status64, the luminal/basal/
mesenchymal classification (LBM) system for breast cancer cell lines65, the
DPM66, and the IBC-specific classification model composed of 79 probe sets9.
For the PR status, nIBC cell lines reported to be PR negative by Dai et al. were
considered as PR negative whereas nIBC cell lines with weak or strong PR
expression were classified as PR positive64. In addition, IBC and nIBC patient
samples were stratified into ER low, moderate and high expression groups
based on the 33rd and 66th quantiles of the ESR1 mRNA levels.
To perform the classification according to the signature of 79 IBC-

specific probe sets, a model based on elastic net generalized linear
regression was optimized on GEPs of the tumor samples using the R
package caret (v.6.0-86). This data set was split into a training and
validation set according to a 3/1 split ratio. Prior to model construction, the
data were centered and scaled to unit variance. Model construction was
performed using repeated tenfold cross-validation against a tuning grid of
alpha values ranging from 0 to 1 with 0.1 increments and lambda values
ranging from 0.001 to 0.1 with 0.001 increments. The optimal model was
selected using ROC statistics and was then applied onto the validation set
of tumor samples to define the model accuracy and onto the data set of
preclinical models to record posterior probabilities for each breast cancer
model. For the latter analysis, the non-averaged GEPs (N= 124) were used
in order to be able to evaluate the cell line-specific variation of the
classification scores and the final call was generated based on the median
posterior probability across replicates.

Differential expression analysis
Identification of DEGs was performed using the BioConductor package
limma (v.3.44.3). Resulting p values were corrected for false discovery using
the Benjamini and Hochberg procedure and false discovery rate (FDR)-
corrected p values inferior to 10% were considered significant.
To identify genes presumably differentially expressed between the UA-

IBC-01 preclinical models and to primary tumor sample it was derived
from, gene-wise differences in expression between both samples were
calculated by subtracting the expression levels measured in the cell line
from those measure in the tumor sample. Genes overexpressed in the
tumor sample and the cell line were then defined based on respectively
the 97.5th and the 2.5th percentile of the global distribution of the gene-
wise expression differences.

Weighted gene co-expression network analysis (WGCNA)
To identify gene co-expression modules in the series of 10 IBC preclinical
models, WGCNA was performed using the R package WGCNA (v.1.69) and

following online instructions (https://horvath.genetics.ucla.edu/). To construct a
signed co-expression matrix, pairwise biweight midcorrelation coefficients
were calculated between all 7182 genes. The resulting adjacency matrix was
transformed into a weighted network by raising the biweight midcorrelation
coefficients to a power that was chosen for the resulting network to adhere to
scale-free topology. Detection of co-expression modules was performed using
UHCA by subjecting the topological overlap dissimilarity matrix of the network
to Ward clustering. The resulting dendrogram was analyzed using an adaptive
branch pruning algorithm combined with partitioning around medoids to
assign genes to co-expression clusters enforcing a minimum size of 100 genes
and co-expression clusters with a similar profile were merged. Then, GMM
scores were calculated for each gene and each co-expression cluster and
represent the Pearson correlation coefficient between their respective
expression profiles. The vector of all gene-wise GMM scores per module is
considered as the characteristic GEP of that module. The preservation of the
IBC co-expression clusters in the series of nIBC preclinical models was
investigated using connectivity and density statistics. Finally, network-based
prioritization of the co-expression clusters was performed using the R package
igraph (v.1.2.5). Therefore, based on the expression levels of the co-expression
modules in the cell lines, the correlation structure amongst the co-expression
modules was determined and dichotomized relative to 0 (i.e., positive and
negative correlation coefficients transformed into 1 and 0 respectively). Then,
individual cell lines were linked to the co-expression modules by dichotomiz-
ing the cell line-specific expression values of the co-expression modules (i.e.,
positive and negative expression values transformed into 1 and 0 respectively).
The resulting binary adjacency matrix, representing both modules and cell
lines, was analyzed using a minimal spanning tree algorithm to determine the
minimal set of edges that connect all components. The result was visualized
using the R package ggnetwork (v.0.5.8).

Systems biology
To translate expression profiles (i.e., vectors of log2-transformed fold
changes or GMM scores) into biological themes, GSEA was performed for
the hallmark gene sets of the molecular signatures database (https://www.
gsea-msigdb.org/gsea/msigdb). Overrepresentation analysis (ORA) of DEGs
between IBC and nIBC cell lines in each of the co-expression modules was
performed using the hypergeometric test. Both analyses were performed
using the BioConductor package fgsea (v.1.14.0). To assess MYC transcrip-
tional activity in IBC and nIBC tissue samples based on published MYC
activation signatures32–34, GEPs were subjected to gene set variation
analysis using the BioConductor package GSVA. Finally, the analysis of the
PMN was performed based on genes reported by Schaub et al.35.
To identify regulators of IBC biology and potentially effective target/drug

combinations for treatment based on the WGCNA results, the GEP of each
co-expression module based on 300 marker genes with the highest or
lowest GMM scores (i.e., 150 each) was analyzed against 1.3 million L1000
profiles present in the CMAP data set (https://clue.io/cmap). These L1000
profiles catalog the transcriptional responses of human cells to a variety of
chemical or genetic (i.e., both knockdown and overexpression) perturba-
tions. The resulting connectivity scores (CSs) reflect the level of agreement
between the analyzed GEPs and the L1000 profiles and range between
−100 and 100 reflecting incongruent or congruent profiles respectively.
Then, for each co-expression module, regulators are defined as genes with
a CS of at least 75 upon overexpression and at most −75 upon knockdown
and drug/target combinations are defined based on a CS smaller than −75
for the drug and greater than 75 upon overexpression of the drug target.

Statistics
To compare the distribution of two categorical variables, Fisher Exact tests, Chi-
square tests or multinomial regression analyses were performed. To compare
the distribution of a continuous variable in the context of one or more
categorical variables, Wilcoxon tests, Kruskal–Wallis tests or generalized linear
regression analyses were performed. To compare two continuous variables,
Spearman correlation or linear regression analyses were performed. Regression
models were performed in uni- or multivariate setting where appropriate.
Particularly, to analyze MYC-related parameters in the context of ER expression
and the tumor phenotype, a nested interaction model was established to
estimate the main effect of the tumor phenotype and ER expression in
addition to IBC-specific effects of ER expression on MYC expression levels.
Comparison of different regression models was performed using the likelihood
ratio test. In all cases, two-sided tests were performed and p values inferior to
5% were considered significant. Data analysis was done in R (v.4.0.1) and data
visualization was done using the R package ggplot2 (v.3.3.1).
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Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
The data that support the findings of this study are available from the corresponding
author upon reasonable request. The GEPs of the ten IBC preclinical models and three
nIBC preclinical models (i.e., MCF7, MDAMB231, and SUM159) can be accessed on
ArrayExpress with accession number E-MTAB-11134.

CODE AVAILABILITY
All code generated in part of this publication is available at https://github.com/
StevenVanLaere/IBCModels.

Received: 10 March 2021; Accepted: 7 December 2021;

REFERENCES

1. Robertson, F. M. et al. Inflammatory breast cancer: the disease, the biology, the
treatment. CA Cancer J. Clin. 60, 351–375 (2010).

2. Hance, K. W., Anderson, W. F., Devesa, S. S., Young, H. A. & Levine, P. H. Trends in
inflammatory breast carcinoma incidence and survival: the surveillance, epide-
miology, and end results program at the National Cancer Institute. J. Natl Cancer
Inst. 97, 966–975 (2005).

3. Schlichting, J. A., Soliman, A. S., Schairer, C., Schottenfeld, D. & Merajver, S. D.
Inflammatory and non-inflammatory breast cancer survival by socioeconomic
position in the Surveillance, Epidemiology, and End Results database, 1990-2008.
Breast Cancer Res. Treat. 134, 1257–1268 (2012).

4. Hennessy, B. T. et al. Disease-free and overall survival after pathologic complete
disease remission of cytologically proven inflammatory breast carcinoma axillary
lymph node metastases after primary systemic chemotherapy. Cancer 106,
1000–1006 (2006).

5. Dawood, S. et al. International expert panel on inflammatory breast cancer:
consensus statement for standardized diagnosis and treatment. Ann. Oncol. 22,
515–523 (2011).

6. Cristofanilli, M. et al. Inflammatory breast cancer (IBC) and patterns of recurrence:
understanding the biology of a unique disease. Cancer 110, 1436–1444 (2007).

7. Singletary, S. E. & Cristofanilli, M. Defining the clinical diagnosis of inflammatory
breast cancer. Semin Oncol. 35, 7–10 (2008).

8. Mohamed, M. M., Al-Raawi, D., Sabet, S. F. & El-Shinawi, M. Inflammatory breast
cancer: New factors contribute to disease etiology: a review. J. Adv. Res. 5,
525–536 (2014).

9. Van Laere, S. J. et al. Uncovering the molecular secrets of inflammatory breast
cancer biology: an integrated analysis of three distinct affymetrix gene expres-
sion datasets. Clin. Cancer Res. 19, 4685–4696 (2013).

10. Rypens, C. et al. Inflammatory breast cancer cells are characterized by abrogated
TGFbeta1-dependent cell motility and SMAD3 activity. Breast Cancer Res. Treat.
https://doi.org/10.1007/s10549-020-05571-z (2020).

11. Bertucci, F. et al. Gene expression profiles of inflammatory breast cancer: corre-
lation with response to neoadjuvant chemotherapy and metastasis-free survival.
Ann. Oncol. 25, 358–365 (2014).

12. Bertucci, F. et al. NOTCH and DNA repair pathways are more frequently targeted
by genomic alterations in inflammatory than in non-inflammatory breast cancers.
Mol. Oncol. https://doi.org/10.1002/1878-0261.12621 (2019).

13. Reddy, J. P. et al. Mammary stem cell and macrophage markers are enriched in
normal tissue adjacent to inflammatory breast cancer. Breast Cancer Res. Treat.
171, 283–293 (2018).

14. Lim, B., Woodward, W. A., Wang, X., Reuben, J. M. & Ueno, N. T. Inflammatory
breast cancer biology: the tumour microenvironment is key. Nat. Rev. Cancer 18,
485–499 (2018).

15. Huang, A., Cao, S. & Tang, L. The tumor microenvironment and inflammatory
breast cancer. J. Cancer 8, 1884–1891 (2017).

16. Mohamed, M. M. Monocytes conditioned media stimulate fibronectin expression
and spreading of inflammatory breast cancer cells in three-dimensional culture: a
mechanism mediated by IL-8 signaling pathway. Cell Commun. Signal. 10, 3 (2012).

17. Mohamed, H. T. et al. IL-10 correlates with the expression of carboxypeptidase B2
and lymphovascular invasion in inflammatory breast cancer: The potential role of
tumor infiltrated macrophages. Curr. Probl. Cancer 42, 215–230 (2018).

18. Mohamed, M. M. et al. Cytokines secreted by macrophages isolated from tumor
microenvironment of inflammatory breast cancer patients possess chemotactic
properties. Int J. Biochem. Cell Biol. 46, 138–147 (2014).

19. Forozan, F. et al. Molecular cytogenetic analysis of 11 new breast cancer cell lines.
Br. J. Cancer 81, 1328–1334 (1999).

20. Ignatoski, K. M. & Ethier, S. P. Constitutive activation of pp125fak in newly isolated
human breast cancer cell lines. Breast Cancer Res. Treat. 54, 173–182 (1999).

21. Kurebayashi, J. Regulation of interleukin-6 secretion from breast cancer cells and
its clinical implications. Breast Cancer 7, 124–129 (2000).

22. Kurebayashi, J. et al. Isolation and characterization of a new human breast cancer
cell line, KPL-4, expressing the Erb B family receptors and interleukin-6. Br. J.
Cancer 79, 707–717 (1999).

23. Kurebayashi, J., Yamamoto, S., Otsuki, T. & Sonoo, H. Medroxyprogesterone
acetate inhibits interleukin 6 secretion from KPL-4 human breast cancer cells
both in vitro and in vivo: a possible mechanism of the anticachectic effect. Br. J.
Cancer 79, 631–636 (1999).

24. Alpaugh, M. L., Tomlinson, J. S., Shao, Z. M. & Barsky, S. H. A novel human
xenograft model of inflammatory breast cancer. Cancer Res. 59, 5079–5084 (1999).

25. Shirakawa, K. et al. Hemodynamics in vasculogenic mimicry and angiogenesis of
inflammatory breast cancer xenograft. Cancer Res. 62, 560–566 (2002).

26. Shirakawa, K. et al. Inflammatory breast cancer: vasculogenic mimicry and its
hemodynamics of an inflammatory breast cancer xenograft model. Breast Cancer
Res. 5, 136–139 (2003).

27. Shirakawa, K. et al. Tumor-infiltrating endothelial cells and endothelial precursor
cells in inflammatory breast cancer. Int J. Cancer 99, 344–351 (2002).

28. Morales, J. & Alpaugh, M. L. Gain in cellular organization of inflammatory breast
cancer: A 3D in vitro model that mimics the in vivo metastasis. BMC Cancer 9, 462
(2009).

29. Arora, J. et al. Inflammatory breast cancer tumor emboli express high levels of anti-
apoptotic proteins: use of a quantitative high content and high-throughput 3D IBC
spheroid assay to identify targeting strategies. Oncotarget 8, 25848–25863 (2017).

30. Williams, K. P. et al. Quantitative high-throughput efficacy profiling of approved
oncology drugs in inflammatory breast cancer models of acquired drug resis-
tance and re-sensitization. Cancer Lett. 337, 77–89 (2013).

31. Fernandez, S. V. et al. Inflammatory breast cancer (IBC): clues for targeted
therapies. Breast Cancer Res. Treat. 140, 23–33 (2013).

32. Muhar, M. et al. SLAM-seq defines direct gene-regulatory functions of the BRD4-
MYC axis. Science 360, 800–805 (2018).

33. Gatza, M. L. et al. A pathway-based classification of human breast cancer. Proc.
Natl Acad. Sci. USA. 107, 6994–6999 (2010).

34. Bild, A. H. et al. Oncogenic pathway signatures in human cancers as a guide to
targeted therapies. Nature 439, 353–357 (2006).

35. Schaub, F. X. et al. Pan-cancer alterations of the MYC Oncogene and its proximal
network across the cancer genome atlas. Cell Syst. 6, 282–300 e282 (2018).

36. Iwamoto, T. et al. Different gene expressions are associated with the different
molecular subtypes of inflammatory breast cancer. Breast Cancer Res. Treat. 125,
785–795 (2011).

37. Lerebours, F., Bieche, I. & Lidereau, R. Update on inflammatory breast cancer.
Breast Cancer Res. 7, 52–58 (2005).

38. Kleer, C. G., van Golen, K. L., Braun, T. & Merajver, S. D. Persistent E-cadherin
expression in inflammatory breast cancer. Mod. Pathol. 14, 458–464 (2001).

39. Van Berckelaer, C. et al. Infiltrating stromal immune cells in inflammatory breast
cancer are associated with an improved outcome and increased PD-L1 expres-
sion. Breast Cancer Res. 21, 28 (2019).

40. Van Laere, S. J. et al. Nuclear factor-kappaB signature of inflammatory breast
cancer by cDNA microarray validated by quantitative real-time reverse tran-
scription-PCR, immunohistochemistry, and nuclear factor-kappaB DNA-binding.
Clin. Cancer Res. 12, 3249–3256 (2006).

41. Lerebours, F. et al. NF-kappa B genes have a major role in inflammatory breast
cancer. BMC Cancer 8, 41 (2008).

42. Evans, M. K. et al. XIAP regulation by MNK links MAPK and NFkappaB signaling to
determine an aggressive breast cancer phenotype. Cancer Res. 78, 1726–1738 (2018).

43. Kim, D. W. et al. The RelA NF-kappaB subunit and the aryl hydrocarbon receptor
(AhR) cooperate to transactivate the c-myc promoter in mammary cells. Onco-
gene 19, 5498–5506 (2000).

44. Khan, S., Lopez-Dee, Z., Kumar, R. & Ling, J. Activation of NFkB is a novel
mechanism of pro-survival activity of glucocorticoids in breast cancer cells.
Cancer Lett. 337, 90–95 (2013).

45. Yuan, Y. et al. ANXA1 inhibits miRNA-196a in a negative feedback loop through
NF-kB and c-Myc to reduce breast cancer proliferation. Oncotarget 7,
27007–27020 (2016).

46. Li, F. et al. Ganoderic acids suppress growth and angiogenesis by modulating the
NF-kappaB signaling pathway in breast cancer cells. Int J. Clin. Pharmacol. Ther.
50, 712–721 (2012).

C. Rypens et al.

11

Published in partnership with the Breast Cancer Research Foundation npj Breast Cancer (2022)    12 

https://github.com/StevenVanLaere/IBCModels
https://github.com/StevenVanLaere/IBCModels
https://doi.org/10.1007/s10549-020-05571-z
https://doi.org/10.1002/1878-0261.12621


47. Zhang, E. Y. et al. Genome wide proteomics of ERBB2 and EGFR and other
oncogenic pathways in inflammatory breast cancer. J. Proteome Res. 12,
2805–2817 (2013).

48. Iwase, T. et al. Quantitative hormone receptor (HR) expression and gene
expression analysis in HR+ inflammatory breast cancer (IBC) vs non-IBC. BMC
Cancer 20, 430 (2020).

49. Jansen, M. P. et al. Decreased expression of ABAT and STC2 hallmarks ER-positive
inflammatory breast cancer and endocrine therapy resistance in advanced dis-
ease. Mol. Oncol. 9, 1218–1233 (2015).

50. Miller, T. W. et al. A gene expression signature from human breast cancer cells
with acquired hormone independence identifies MYC as a mediator of anti-
estrogen resistance. Clin. Cancer Res. 17, 2024–2034 (2011).

51. Faldoni, F. L. C. et al. Inflammatory breast cancer: clinical implications of genomic
alterations and mutational profiling. Cancers 12, https://doi.org/10.3390/
cancers12102816 (2020).

52. Lerebours, F. et al. Evidence of chromosome regions and gene involvement in
inflammatory breast cancer. Int J. Cancer 102, 618–622 (2002).

53. Bekhouche, I. et al. High-resolution comparative genomic hybridization of
inflammatory breast cancer and identification of candidate genes. PLoS ONE 6,
e16950 (2011).

54. Ross, J. S. et al. Comprehensive genomic profiling of inflammatory breast cancer
cases reveals a high frequency of clinically relevant genomic alterations. Breast
Cancer Res. Treat. 154, 155–162 (2015).

55. Hamm, C. A. et al. Genomic and immunological tumor profiling identifies tar-
getable pathways and extensive CD8+/PDL1+ immune infiltration in inflam-
matory breast cancer tumors. Mol. Cancer Ther. 15, 1746–1756 (2016).

56. Bingham, C. et al. Mutational studies on single circulating tumor cells isolated
from the blood of inflammatory breast cancer patients. Breast Cancer Res. Treat.
163, 219–230 (2017).

57. Xiao, Y. et al. The lymphovascular embolus of inflammatory breast cancer exhibits
a Notch 3 addiction. Oncogene 30, 287–300 (2011).

58. Bertucci, F. et al. 8q24 Cancer risk allele associated with major metastatic risk in
inflammatory breast cancer. PLoS ONE 7, e37943 (2012).

59. Litviakov, N. V. et al. Breast tumour cell subpopulations with expression of the
MYC and OCT4 proteins. J. Mol. Histol. 51, 717–728 (2020).

60. Gerratana, L. et al. Understanding the organ tropism of metastatic breast cancer
through the combination of liquid biopsy tools. Eur. J. Cancer 143, 147–157 (2021).

61. Chapman, N. R. et al. A novel form of the RelA nuclear factor kappaB subunit is
induced by and forms a complex with the proto-oncogene c-Myc. Biochem J. 366,
459–469 (2002).

62. Yun, J. S., Rust, J. M., Ishimaru, T. & Diaz, E. A novel role of the Mad family member
Mad3 in cerebellar granule neuron precursor proliferation. Mol. Cell Biol. 27,
8178–8189 (2007).

63. Parker, J. S. et al. Supervised risk predictor of breast cancer based on intrinsic
subtypes. J. Clin. Oncol. 27, 1160–1167 (2009).

64. Dai, X., Cheng, H., Bai, Z. & Li, J. Breast cancer cell line classification and its
relevance with breast tumor subtyping. J. Cancer 8, 3131–3141 (2017).

65. Ross, D. T. & Perou, C. M. A comparison of gene expression signatures from breast
tumors and breast tissue derived cell lines. Dis. Markers 17, 99–109 (2001).

66. Lim, E. et al. Aberrant luminal progenitors as the candidate target population for
basal tumor development in BRCA1 mutation carriers. Nat. Med. 15, 907–913 (2009).

ACKNOWLEDGEMENTS
This study is supported by the Inflammatory Breast Cancer-International Consortium
(IBC-IC). DoD W81XWH-20-1-0153 (GRD)

AUTHOR CONTRIBUTIONS
C.R. and F.B. are equal first co-authors. Design of the work: S.V.L., F.B., data analysis,
and interpretation: S.V.L., F.B., C.R., paper preparation: S.V.L., C.R., paper review: all
authors.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41523-021-00379-6.

Correspondence and requests for materials should be addressed to Charlotte
Rypens.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2022

C. Rypens et al.

12

npj Breast Cancer (2022)    12 Published in partnership with the Breast Cancer Research Foundation

https://doi.org/10.3390/cancers12102816
https://doi.org/10.3390/cancers12102816
https://doi.org/10.1038/s41523-021-00379-6
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Comparative transcriptional analyses of preclinical models and patient samples reveal MYC and RELA driven expression patterns that define the molecular landscape of IBC
	Introduction
	Results
	Cluster analysis and molecular subtyping
	Differential expression and co-expression network analysis
	Identification of co-expression cluster regulators and antagonizing chemical compounds
	MYC expression and transcriptional activity in IBC patient samples
	Expression analysis of proximal MYC network members

	Discussion
	Methods
	UAIBC01 PDX model
	Gene expression data from cell lines
	Gene expression data from patient samples
	Unsupervised analysis
	Classification
	Differential expression analysis
	Weighted gene co-expression network analysis (WGCNA)
	Systems biology
	Statistics
	Reporting summary

	DATA AVAILABILITY
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




